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12013-QR 2 November 12, 1965
. DESIGN OF A LOAD RELIEF CONTROL SYSTEM
. ABSTRACT

This is the second quarterly progress report submitted in accordance with the
provisions of Contract NAS8-20155. It contains a review of the current project
status, discussion of the computational results obtained to date, and discussion
of the generation of wind-induced missile bending-moments. The analysis requirements
of the study are almost completed, and the "direct-iteration" routine is considered
powerful and sufficient for determining optimum control gains. It is suggested that

future work be based on a more realistic bending-moment-rate expression.
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SECTION I

PROJECT STATUS
This section contains brief descriptions of the current technical status of the
project, work accomplished in the reporting period, preliminary conclusions, and
anticipated work. Details are presented in the Technical Discussion, Section III.
For convenience, reference to previous progress reports, Honeywell Reports
12013-PR 1, 2, 3, 4 and 12013-QR 1, will be indicated by the notations (PR1),

(PR2), (QR1), etc.

A. Current Status
This subsection contains brief descriptions of the current status of the project
milestones listed in the accompanying program chart.
TASK 1. Preparation
la. Develop Wind Model. Status: Complete. The derivation of the model
was presented in (QR 1) and the calculated model coefficients in (PR 3).
1b. Write Equations of Motion. Status: Complete. Equation forms and
coefficient values were presented in (QR 1). Anomalies discovered in the bending-
moment-rate expression were reported in (QR 1) and (PR 3). The results of our
investigation of/these anomalies are presented in Appendix A of this report.
lc. Prégram Equations. Status: Complete. The programmed equations
include an arbitrarily modified bending-moment-rate expression.
1d. Present Results of Computations. Status: Complete. Uncontrolled
vehicle mean-wind responses were presented in (PR3). Uncontrolled vehicle response

covariances are presented in Appendix B of this report.



TASK 2. Analysis

2a. Algorithm for 81 and 8y Status: Complete. The derivation of the
algorithms was presented in (PR1l) and (PR3). It was shown in (PR3) that the
optimum solution would not produce infinite gains and zero covariances.
2b. Program algorithm. Status: Partially complete. The direct iteration
algorithm presented in (PR3) has been programmed.
2c. Compute. Status: Partially complete. Results obtained with the
direct iteration algorithm are presented in Appendix C of this report. The
arbitrarily modified bending-moment-rate expression was employed in obtaining these
results.
TASK 3. Simulation. Status: Partially complete. The response covariances
of the minimax controller developed under Contract NAS8-11206 (reported in Honeywell
Report 12003-PR 15) have been calculated and are presented in Appendix D of this
report.
TASK 4. Reporting. Status: Four monthly progress reports and one quarterly
progress report have been submitted.
B. Preliminary Conclusions
All analyses to date have employed the arbitrarily modified bending~moment-
rate expression. It now appears that the direct-iteration routine described in
(PR3) is sufficient for determining a satisfactory controller, and the gradient
routine described in (PR1l) need not be employed.
C. Progress During Reporting Period
All of the results presented in Appendices B, C, D were obtained during the
reporting period.
The theoretical analyses reported in Appendix A were obtained in the previous
reporting period, but illness in Mr. Stone's family precluded their presentation in
the previous report (PR4). The coefficient values presented in Appendix A were obtained

in the current reporting period.
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D. Anticipated Work.

1. Analysis. The bending-moment-rate expression described in Appendix A of
this report is in a distributed parameter form (an integral over vehicle length),
and it is computationally inconvenient to employ it as stated. We shall attempt
to derive a suitable lumped-parameter expression.

Given such an expression, the minimizing control gains will be recalculated
with the direct iteration routine. The effects of varying the gimbal-angle
limit, the bending moment limit, etc., will then be examined.

An attempt will be made to determine the causes of gain-peaks, sign changes,
etc. Controller variations are produced by variations of the vehicle equation
coefficients and by the form of the cost expression, but few of the causal
relations have been identified.

2. Simulation. The analog simulation and comparison studies (Task 2 above)
will be started. Gains obtained with the arbitrarily modified bending-moment-rate
expression will be employed until gains computed with a more accurate expression

become available.
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SECTION III

TECHNICAL DISCUSSION
Four topics are discussed in this section. The arbitrarily modified bending-
moment-rate expression employed to date Ls first presented. Significant compu-
tational details of the direct-iteration routine are next presented. The results
presented in Appendices B, C, D are then discussed. The section concludes with

discussion of the present project status and anticipated future work.

A. Bending Moment Rate.
The "Model Vehicle #2" bending-moment expression is

- ! !
Ib MBB + %ix

‘6 + M [-Z 4 cp-l-y—(-”-]
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where

Ib = bending moment

B = gimbal angle
z = drift rate
® = attitude

Ve = side wind velocity
v = vehicle velocity,
Direct differentiation of this equation yields
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Substitution of the vehicle model and wind model equations from.(QR1) produces

the bending-moment-rate
l L]
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where

h = altitude

<4\
]

mean wind

=}
(]

wind deviation from mean

X = second wind state

T = white noise input to wind filter.

This expression was objected to in (QR1l) because it contained T, the white noise
input to the wind filter. It was objected to in (PR3) because of the extreme time-
variations of the z, Gw’ and w coefficients. The variations were large enough to
prevent approximating the wind and vehicle differential equations with 1/100 sec.
difference equations. The i, Gm’ w, and T) terms all appear to be physically unrealistic.

These observations prompted the study of the bending-moment equation presented
in Appendix A of this report.

The above equation was modified and used in the analyses to provide a mathe-
matical vehicle for testing the direct-iteration routine. The 1 white noise term

was dropped from the equation, and the z, ;w’ and w coefficients were arbitrarily




smoothed. The original coefficients and the modified coefficients employed in
the analyses are presented in Appendix E of this report. No claim of realism

is made for the resulting bending-moment-rate expregsion.

B. Computational Details.
Several of the computational details of the direct iteration routine are

noted so that other investigators of similar problems can avoid pitfalls we

encountered.

1. 1t is difficult to compute the sum
Xax
2

o
1 - J 7l— e
- 00 Qﬂ

for large values of &(a > 4) due to computer round-off errors. The approximation

2 o

X 1 '_E
1 - J _—— 2 1 e
o fgjf =/ «Q

was employed in our analyses. The accuracy of the approximation increases with
increasing @ and it is correct to two significant digits at o = O.
2. For small values of @ (@ < 4) the Gaussian integral can be obtained to

as many digits as the computer is capable of carrying by truncating the power series
2
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after j terms with the ratio tgst

W / (i o
1

519 (25+1) =0 ir2%(2141)

where N is the number of significant digits desired. N = 9 was employed in our
analyses.

3. On the Honeywell 1800 computer employed in our analyses, any exponential
with an argument less than -128 1s automatically set to zero. We were therefore
forced to set the function e -3( ) to zero for vy/c > 16. This automatically produced
zero gimbal and bending-moment likelihood densities over a great portion of the
flight time.

4, A 1/100 second sampling interval was chosen for-approximating the vehicle
model and wind model differential equations with difference equations. Computer
storage limitations prevented storing model coefficient values at each 1/100 sec.
instant over the 150 sec. flight. We:.decided to store the coefficient values at

five second intervals and obtain the intermediate values by linear interpolation:
c(nedt + M.5) = c(M.5) + =—— 200 (c(M.545) - c(m5)),

where 0 < n< 500, 0 < M < 30.

To avoid having to compute the products —= (C(M*545)-C(M*5)) in each 1/100

500
sec. interval, we stored the initial values C(0), the final values C(150), and the
increments 5%6-(C(M-5+5) - C(M*5)). This permitted updating or backdating coefficient
values by adding or subtracting the stored increments, thereby avoiding the

n/500 multiplication.
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Computer round-off errors were encountered with this routine. The large

(orders of magnitude) variations of some of the coefficients implied adding very small
numbers to very large numbers, and we found that the final values produced by
forward computation from the initial values differed from the original final values.
These differences caused serious problems, as some always-positive coefficients
which converged to zero at the final time were made to converge to negative final
values. The sign reversals, of course, greatly affected the values of the control
gains produced by the routines.

This problem was circumvented by truncating the(original coefficient values to
five significant digits. By doing this the coefficients and increments always could

be added with no round-off errors.

C. Results of Analysis

The computation results presented graphically in Appendices B, C and D of this
report are discussed in this subsection.

l. Uncontrolled Vehicle Responses.

The responses of the uncontrolled vehicle to the (NASA TN D-561, Patrick AFB,
March) mean wind were presented in (PR3). The uncontrolled vehicle response
covariances to the (QR1l) second-order stochastic wind model are presented in
Appendix D of this report.

The second graph, B2, of bending-fioment-rate covariance employed the arbitrarily
modified bending-moment-rate expression discussed in Section IIIA of this report.

The logarithmic scale of the ordinates should be noted.

The ratios of the response covariances to the squares of the amplitude limits

imposed (QR1l) indicate the need for vehicle control. The limits imposed were:
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IIb' < 2.25*106 Kilopons throughout the flight

| + .388a\ < 0.0453 rad/sec at T = 150 sec.
|z‘ < 3000 meters at T = 150 sec.
lél < 40 meters/sec at T = 150 sec.
The graphs show that ’
cov{Ib(t)Ib(t)} < (2.25*106)2 for t.< 55 sec

cov{(®(t) + .388x(t))(@(t) + .388a(t))} < (0.0453)% for t < U5 sec

coviz(t)z(t)} < (3000)2 for t

A
O
N
7]
o

coviz(t)z(t)]} < (hO)2 for t <

=
77
m
n
L ]

\,

These numbers indicate that application of control during the early portions of

the flight is probably not necessary.

2. Controller Determination

As discussed in (PR3), the direct-iteration technique is based on properly
choosing the weights in a quadratic cost-form so that the controller minimizing the
quadratic cost would also minimize the original sum-of-likelihoods cost. The
quadratic weights are rechosen until the coefficients of the first variations of the
quadratic and likelihoods costs are identical.

Two advantages for this technique were claimed. First, the gains minimizing
the quadratic cost could be obtained without iteration by employing the results
presented in (PR1). That is, first guesses would produce reasonable gains, reasonably
near to the gains minimizing the sum-of-likelihoods cost. Secondly, the etfeccs
of varying quadratic weights on vehicle responses are intuitively much clearer than
the effects of direct gain variations. Increasing the weight of a particular response
would decrease the ;ovariance of that response at the expense of other response

covariances, This implies reasonable convergence times.
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The direct-iteration technique has been programmed and run. After considerable
program debugging, four runs qf one iteration each were made with arbitrarily selected
quadratic weights to provide a basis for selecting initial weights for itsration.

Each iteration of the weights requires approximately fourty minutes camputation time,
the time being almost equally divided between gain computation and response covazizs
computation.

The results obtained from these initial passes were surprising. The response
covariances produced were much lower than expected. During much of the flight ths
bending-moment and bending-moment-rate covariances are sufficiently low that the
computed likelihood densities are lower than our ability to compute them, as
discussed in Section IIIB above. The gimbal-angle likelihood densities werz lower
than could be computed throughout the flight. The final time likelihoods weze also
very low.

The results of the fourth of the initial iterations are presented in Appendix C
of this report. These particular results are unsatisfactory in only one respect =

the weight on the staging cost, o+ .388x, was too low, and the resulting final co-

variance of that term is too large. The various likelihoods produced by the system are

Probability that lB(t)\ exceeds 5 degrees at least once during the flight =

(too low to compute)

Probability that lIb(t)l exceeds 2.25x106 kilopons at least once ducing the flight
- 1.64x107°

Probability that |® + .388al > 0.0453 rad/sec at the terminal time = 0,424
Probability that |z| > 3000 meters at the terminal time = (too low to zompwte)

Probability that |é| > 4O meters at the terminal time = (too low to compute)a
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The feedback gains of the controller are presented in Figures Cl.ll through
Cl.72, and the corresponding deterministic input in Figures C1.81 and Cl.82.

It is noticed first that the gimbal angle feedback, Figure Cl.k4, is relatively
constant over the flight time. The gimbal-actuator differential equation employed

satisfied

B = -1k,6 + 1k,6u,

The Bfeedback varies between 0.6 and 0.997, and is approximately 0.9 during most

of the flight. The 0.9 value produces
B = -1.468 + 14.6(u - 0.98)

and indicates a 10:1 dectease in the gimbal feedback. That is, the gimbal actuator
has a lower break frequency than before.

The reason for this is the requirement for reduction of é implied by the cost
form (PR1). Reducing é reduces the likelihood that P will exceed its amplitude limit.

All of the controller curves exhibit large variations during the fimal few
seconds of flight. This is expected (large final-time variations have been observed
in every quadratic-minimization, terminal-cost problem we have solved). It is due
partly to the change of control emphasis from P and Ib to é + .388a, z, and z
towards the end of the flight. The major cause is the decrease in the nzed for
damping in the final few seconds of flight.

Six of the gains (all but the P-gain and the deterministic input)change sign
between 148 seconds and 149 seconds. Some are seen to peak during the high dynamic~

pressure portion of the ¥light, while others change sign there. We have not had

an opportunity to determine the causes of these various effects.
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The vehicle mean-responses are presented in Figures C2.1 through C2.7. These
are the responses to the mean wind and the deterministic input of Figures Cl1.81,
Cl.82. Two curves are presented on each graph, one where the controller was engaged
at t = 0 sec. and the second where the controller was engaged at t = 40 sec.

The vehicle response covariances are presented in Figures C3.1 through C3.7.
Again t = O sec and t = 40 sec. curves are shown. The significant aspects of these
curves are the high bending moment covariances in the high dynamic-pressure region,
the increase of bending, gimbal and staging covariances at the end of the flight,
the relatively constant drift and drift-rate covariances, and the sharp decrease
of the latter covariances at the end of the flight. The sharp final time variations
of the covariances are an expected property of the solution - the weights on drift
and drift rate were large, and the entire final control effort is directed towards
reducing these two responses.

The t = 40 sec. responses are in general worse than the t = 0 sec. responses.
This is expected, as earlier engagement of the controller produces smaller initial
conditions at t = 40 sec.

The bending moment likelihood densities are presented in Figure C4 for the two
engagement times. It is seen that the likelihood of exceeding the bending moment
limit is essentially zero during the early portion of the flight and during most of
the time after leaving the high dynamic pressures. The final time peaking up of the
curves is produced by the control emphasis on reducing drift and drift-rate.

A property of a stationary random process is that displacements and time-rates

of change of displacements are uncorrelated. If the controlled vehicle in this
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problem behaved like a stationary process the correlation coefficients

Jeovip(e)B(r) 1 , leovir, (£)T,(t) 1l
op(t) op(t) o; (£) oy (t)
b b

would be approximately zero. The implication of "almost" stationarity is that
application of stationary (infinite time, conventional) control design procedures
might be successful.

The above correlation coefficients are plotted versus time in Figure C5 for the
t = 0 sec. controller—engagement case. It is evident that there is hope for infinite-
time-control procedures during the intermediate flight times, but the system dces not
behave like a stationary process during the final portion of the flight. This ig
due to the character of the problem - infinite-time design procedures are not app-
licable in the final seconds of a finite-time control problem.

The results as a whole are most encouraging, and indicate that one can

quickly design an excellent controller with quadratic minimization techniques.

D. Minimax Control

The response covariances of the minimax controller developed under Contract
NAS8-11206 (reparted in Honeywell Report 12003-PR 15) were obtained and are presented
in Figures Dl through D7, Appendix D.

The minimax controller was developed only for the first eighty seconds of
flight. The basis of the technique was to break the eighty seconds into short
intervals over which the vehicle response equations could be approximated by
constant coefficient equations. The technique then found the best linear controller
of the form

B=kcp+1c25p+ka

1 3

(actuator dynamics were ignored) for each interval, where the best controller would
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minimize the maximum excursions of selected linear combinations of responses at
the end of the interval. The only questionable aspect of this controller design
procedure is that the initial conditions at the beginning of each constant coeffiziant
interval were assumed zero - that is, final conditions of previous intervals werz
not carried forward.

The controller was tested with the gimbal actuator in place, so that the contunl

input was

u = kl® + k2¢ + k. a.

3

The minimax response covariances were generally higher than those presented in

Appendix C., The covariance ratios were approximately

Response Minimax/Appendix c
B 10/1
B 1/1
}b 10/1
?b 1/1
o + .388a 10/1
z 1/1
z 10/1

It must be pointed out that these ratios are not a fair test of the minimax.
The minimax design did not include the actuator, and no ® + .388x criteria was
imposed. Further, the covariances were obtained with piecewise constant minimax
controlsino attempt to smooth the control variations was made.

It is felt that under these conditions the covariance ratios are remarkably

close, and the results demonstrate the soundness of the minimax procedure.
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E. Anticipated Work

This subsection contains brief discussions of the current project status,
preliminary conclusions, and the future work anticipated.

1. Analysis

The results presented in Appendix C of this report demonstrate that the dire:t-
iteration technique works quite well. All but one of the failure-likelihoods pro-
duced are very low, and it is expected that the remaining likelihood will be satis-
factorily reduced with a few more iterations.

It is felt that the direct-iteration technique is itself sufficient for our
purposes. Further refinement of already low likelihoods with gradient techniques
(PR1) would be a waste of effort.

Future analysis efforts should be directed first towards obtaining a realistic,
computationally feasible bending-moment-rate expression. The above analyses employed
an arbitrarily modified expression, and a more realistic expression is required if
the results are to be physically significant,

This done, the direct-iteration technique can be applied to determine a controller.
The two remaining analysis tasks then will be to determine the effects of amplitude-
limit variations and the causes of the various peaks, sign changes, and relative
gain magnitudes. The last effort is essential in that we cannot claim to have solved
the control problem until the causal relations determining the behavior of its solutiom
have been understood. L

2. Simulation

Simulation tests will begin in the coming reporting period with a controller
developed with the direct-iteration technique. The purposes of these tests are to
check the analyses, to gain understanding of the behavior of the controlled system,

to compare competitive controllers, and to reduce the controller time-histories

to a physically constructable controller.

Y
PR S I
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The simulation tests will be started with the vehicle model described in (QRI).
It is recaognized that the simulation will suffer the bending-moment-rate anomalies
described in Section IIIA, This is further reason to concentrate analysis efforts

on finding a realistic, computationally feasible bending-moment-rate expression.

e
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APPENDIX A
A MODEL FOR A LAUNCH VEHICLE THAT
INCLUDES DISTRIBUTED AERODYNAMIC STRIP
(TRANSVERSE) FORCES

By C. R. Stone

ABSTRACT
‘Data for the "Model Vehicle #2 are modified to exhibit aerodynamic forces dis-
tributed along the length of the vehicle. This modification eliminates unrealistic --
impulses in bending moment rate due to step winds. The distributed loads can be-

approximated by adding more dynamics to the plant representation.

INTRODUCTION

Pages 6-10 of the First Quarterly Progress Report discuss the physically un-.‘
realistic values of bending moment rate due to wind shears calculated for thed."“:xjﬁw
"Model Vehicle #2" (Reference 1) as presented in Appendix B of the Quarterly Progress
Report. The lumped parameter approximation calculates infinite befding moment réﬁeg
due to sfep Qinds. e

It is the purpose of this appendix to provide a modification to the plant model
that will provide more realistic measures of bending moment rate. 1In the interest of
expéhiency theAequations of motion are modified in the simplest manner that will-H
provide distributed loads. The equations are derived based on the assumption that
at a given flight condition.(dynamic pressure and Mach number) the aerodynamic load "
at a point on the vehicle is due solely to the motion of that point. Integratiﬁg T

these loads across the vehicle yields the force on a transverse strip. Herein, the

unsteady aerodynamic forces are computed from Newtonian Impact Theory (Reference 2)

and Piston Theory (Reference 4) in a manner that is consistent with the lumped parameter

data for Model Vehicle #2 supplied by NASA (Reference 1).
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Impact Theory is used to estimate the unsteady aerodynamic loads over the
portion of the vehicle where there is axial symmetry. Modified first order Piston
Theory is used to estimate the unsteady aerodynamic loads over the finned portion
of the vehicle. Modifications consist of replac1ng the Mach number effect of
Piston Theoxy with the Prandtl-Ackert and Prandtl-Glauert correction factors for

supersonic and subsonic speeds. Tranconically the factors are limited to 2.

Fin

tip lezkage at supersonic speeds is cstimated by using a linear variation hetween

the tip and the Mach cone,

Consiste

eztimared by
0ld ard vreviged modele for comstani wind

Whuile it may subsequently be nezessary to estimate the urnsteady aevsdy

loads by other by use of other theories, it doss appear that Newtoniszo Iumact aud
Piston Theosies zre fhe best choice for fire: estimates of the unsteady aivr loads,
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iy

k1]

st. they yield local pressures as a function of the local body motion; as opposed
to yielding local vrecsures as a functionzl over the entire vehicle., 4le coiat
function wvelationship between local motion and pressure leads to simpler equationns
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of motion than will probably be attaived by move accurate theories,

wt
0
el
2
ol
‘e
!
4
)
<
n
L]
[}
w
[
te
]
H
[}
da
3}
(4]
P—e\
~
N

accurate during “he flight conditions where it is
expected the uastezdy aerodypawnic effascis are important,  Efforts with the wliaimsx

effort to bending moment minimization show, a5 wouvld be anticipated, that the problen
ig nost difficult et the maximaa dysemic pressure flight condition (paze 49 of Refe

3). If compromises in the vehicle modeling must be made, they should o

[
e
=
[+
n
(4

e pressure is rhe Lichesl.
pressure flizhi coscitding is 1o7. This is below the hynersounda vepime winere Lunach
3 < { i

h -5 o T /'\‘_ R SN
D a: ™ .

[P

aacarate




A

()

and Piston Theories yields excellent results. The Mach number is sufficiently
high that qualitative conclusions resulting from thedir use should prevail and it
is even expected that quantétative results would not be changed markedly.

The unsteady loads are summarized next. Equations of motion are then presented.

that do not include effents of rime rates of cbenge of zoefricients; t should

&ese

ptove to be satisfaatorv, Hollowing the presentation of the unsteady airload
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= === {19,022} for M < and for 2.54 < x < 3.14
Vit aE s
= 8{19.22 '(75—/%1 .1’+-x } for '[5- < MAS’ ‘/—,L;z< M and for 2.54 < = < 3,1k

- {19.22 - 3e14-x } for (2. <M and for 2.54

. > 5 A Zo LR L 3.1
VMA -1 VMA -1

FAY

o {31.26-3.805x} for M < @- and for 3,14 < v - =,03

1-M,°2 A2 -

A

= 8 {31.26-3.805x} for %3- < MAS '[22 and for 3.14% < x 5,08
?\/-Fi_— {31.26-3.805x} - for “[3 < P}; and for 3.14 < x < 7,07

[, - 1
= 21,6056 - 2,455x for 5.05 < x < 8,32
= 1.1850 for 8.32 « x < 8L,08
= 15,82 = o.L+1;8{x-122.09}-o..2036{»:«122.09}2 for 84.08 < x < 90,31
= 0.9875 for 90.31 < x < 122,09
= 7.28 = 0.1830{x-84.08} for 122,09 < x =] 126,5
= 0.6583 for 126.51 < x = 148.3
= 3.91{144, 86-x1 for 142,30 < x < 144,80
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EQUATIONS OF MOTION

Equations of motion that include the distributed airloads but do not include

the effects of time rates of change of coefficients are presented.

The transition equations are

% 85, 2 33 3y, o |®
2 .%21 2 853 3, Of |Z
\
Bl ° | o o N EE +
) 1 0 0 0 ol |o
3 o 1 0o o0 of [z

where
. 2
a. = (£f), == IXN ﬁ(x " o) dx
11 1 Ixx da - v
Xp
a = - a_llt
12 v
= . E_ - = -
813 © zlxx(xcc XB) Co
2
Tt
C, ¢f D
4 = -7 (xge = xcp) = €,
- 1 ar (% - x.0)
ay = (££), 2 .l':N da v d
7.2
C, qD )
a =--1-' < =-4£(§-)
22 \' m V'm

u +

3,(3.,0)
CE(VW,t)

0

2.1

P 4

* ‘ DO
L par
SIS SRS SRS a1 A P

Ry
e
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a_ =E
23  2m
C T D2 ,
- z -
A =X, % _EX N
24 m m m m
= '11+o6
33
b_ = +14.6
3
- X
_ (££), N g Vo5t - =)
Cl(v ,t) = T J o (x XCG) v dx
XX XT
’&‘I - X
(3 ,t _5, JXN &, NWwt-Tv)
2V w? m < v
T
Cllxx
(ff)l =
*N dt
J -— (x - %, )dx
L cG
T
4
Ny
S)m
f‘NsLde 5
v =
Lm
XT g

S rveeir
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The criteria equations are

B 1 0
B d21 0
IB d31 d32
IB= d1+1 d!+2
S 0
z 0
Z 0
where
d21 = 333
d31 =M B
(x
= dt
d32 N .[ {
d_ =M
33 Mg
d
= . 33
d3l+ v

33

[~

43

03

d34

Ly

54

AT

ol
Y B
0 o
0 o+
0 z
0 z

1

x') + M'(x

53(;;,x,t)

Eh(v;:x:t)

, -
+ (x‘ - xCG)a11

]}dx,

o~ ——_——__




[0

y1 = d31a33 + d32a13 + d3)+ae3

dyp = d3p37; + dag + djpay,

13 = 93271y 432y

dyy = d3paip + dgyan,

[o )
|

= 0.338

4. = - 9.338
5k v

l¢]
[}
&

&

+(ff)6J M(x-x){j dt

A8

- X

’ vw( N t - v
x) -
xN’t - xN—-_ )
v .
(£ ,
CG) + 2 ]dx”}dx

(ff)l "
° [ VIxx (X - xCG)(x
£ (V%) = 32 1(v st) +dge 2(v ,t)
0.338
£ =+ 0-33°

e —



-x' !

él&(é‘w’x’t) = J;;&(x,x’,t)%w(xn,t - X v Yax’ +

"

+ '}x J /.l,a(x, S, t)V (xN,t - iN—-— Ydx"dx’

i

1
§

-] {-8F Ep e EM(x-x'>J°‘“%%~
. *1

(££) ( f)
1 /" 4 2 "
.[ - (x" - xCG)(x - XCG) + Td } dx’
dt, 1
;ﬁ(x,x',t) = -(ff)6 Eaﬂx - x'kf
UQ(X:X’:x”,t) = tg(x,x,:x”,t) Uh(x,)x”,t)
. ’ 'E’
I~‘3(x:x ,x”,t) = (ff)6 M (X X ) da
where M’ and %& are a function of x' and x”, respectively.
(ff)1 , ! ) (££), .
uu(x ,x7,t) = N (x" - Xeg (x - Xoo) * o ;
L

The sources for all data except unsteady air load derivative ) and the

&
running mass M’ have been called out in Appendix B of the First Quarterly Progress
Report. %& is tabulated in the previous part of this Appendix. The running mass

M’ can be obtained by use of pg 56 of reference 1 and the total mass (m) and center

of gravity data,
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LUMPING THE LOADS

Equations 2.1 and 2.2.previously presented may be revised to replace the
distributed air loads with equivalent lumped-parameter dynamic load build-up functions.
This would permit replacing the lumped parameter representation that has been used
with one of higher order that correctly represents the distributed air load. The
revised equations would not display impulses in bending moment rate due to step
winds.

Development of the lumped parameter models for the unsteady air loads has just
been started. This discussion will therefore necessarily just indicate'how‘the
lumping will be accomplished. The step responses (due to a wind gust) for
El(sg,t), 52(3;,t), fé(vw,x,t) Eu(g;,x,t), and ék(é;,x,t) will be determined by use
of the unsteady air load data previously presented. The step responses will be
approximated by lumped-parameter dynamic models and the lumped-parameter dynamics
will be added to the equations of motion.

The estimation of the lumped-parameter model for 52(3;,t) will be used to illus~-

trate the procedure.

Figure A-1 presents the unsteady air load at the high dynamic pressuvre .’ ght

condition. Integrating this and normalizing yields the normalized step rest ju; for
52 as presented in Fig. A-2. The rapid changes in load are due to the nose cone;
first and second cone frustrum transition sections, and the fins.

The lumping problem is thus the approximation of the step response of Fig. A-2
with dynamics that have a similar step response. Once the form of the approximéting
dynamics have been determined, optimization of the parameters can be accomplished
in a straightforward manner. Figure A-2 (and the geometry of the vehicle) indicate

the step response might be approximated by the superposition of lags at 0.050, 0.115,




All
and 0.280 sec.Ir.Skelton estimates that increases in compqtatiénal times for delays
of this magnitude are about equivalent to 25 ordersof differential equation.
Hence, a differential approximation to Fig. A-2 will be sought. It seems obvious
that Pade approximates (pp. 547-551 of Reference 5) should be used. Superpostion
of 0.4 of a first over second Pade approximate at 0.28 sec and 0.6 of a 0.1 sec lag
yields an approximation that is good to within 20% but the error is plus and minus
near 0.28 sec. This indicates that a Pade approximate of at least third over fourth
must be used to obtain qualitatively correct results.

Future plans include developing satisfactory approximations.

ESTIMATION OF UNSTEADY AIR LOADS

The sources of and approximations to the acrodynamic theories are discussed

[oN

first. These results are then used to estimate the loads on the two and three

dimensional parts of the vehicle.

AERODYNAMIC THEORIES

Piston theory is the basis for estimating the loads over the two-dimensional
(finned) regions and impact theory is used for the three-dimensional axially symmetric
regions. ::
Two Dimensional

First order piston theory (reference 4) states that the unsteady pressure

difference Ap across a two-dimensional surface at high Mach number is given by

i
bp = = qu h,1
M,

The average steady-state Jp for thin airfoils at supersonic speeds is given by

the Prandtl-Ackert expression

4
MA -1
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and for subsonic speeds by the Prandtl-Glauert

€

CZO )
bp = 7T=ﬁ£2 qQ 4,3

Considering the fin aspect ratio and present intentions it seems reasonable to take

CLa =4,
0

Equations 4.2 and 4.3 agree at Mach one. Equations 4.1 and 4.2 are about equal

at high Mach numbers. It thus appears reasonable to replace M, in equation k.1

A
by./!MAE_ll .

At unity Mach number‘%|MAE-1| goes to infinity and it is larger at all tramsonic

s than experiments show. The Prandtl correction factors will be arbitrariiy

truncated at 2. Hence, the final two-dimensional piston theory pressure difference

will be taken as

: L 1
KPRy o if /Ty eq] <2
bp = A A boh

8qa if/%ZE

MA -1

L - L for M, < /3/2. For M, >-/5/2
a
0

tip leakage is accounted for by linearly reducing the &p calculated by equation 4.4

Tip leakage is assumed to be lumped in C

by the inboard Mach line and the fin tip, i.e.,

A
ad 7

MACH LIME /
ry3.4%

/S 7O o ZEE
R K|~ PRESSURE

T T LIMEAR PEESSULE
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For /3/2 < MA < /5/2 tip leakage is assumed to vary linearly,

Three Dimensional

The air loads on the axially symmetric and engine shroud parts of the body are
calculated from impact theory (reference 2) which estimates the pressure on unshielded
portions (unobstructed line of sight to the relative wind) as

2
P = pVN 4,5

where
p is the air density
V.. air velocity normal to the surface.
N y

The pressure on shielded portions is taken as zero.

VEHICLE DIMENSIONS

The vehicle dimensions are assumed to be those presented in Fig. A-3; this comes
from page 53 of reference 1,

Impact theory is used to estimate air loads on the parts of the vehicle except for

those between 1.63 and 5.05. Two two-dimensional area excludes the 396" strip

between body stations 1.63 and 2.5k,

TWO DIMENSIONAL

Application of the piston theory results presented in equation 4.4 to the
geometry just defined is immediate. The results are presented in the equations for

body stations 1.63 to 5.05 under AIR LOADS.

THREE DIMENSIONAL

The application of impact theory to unsteady air loads estimation is presented
in detail in order to display some assumptions made. The order of presentation is

nose cone, cylindrical sections, transition sections, and shrouds and aft body.

e et o = S———— e ~ rosio—
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Nose Cone

The surface of the cone in rectangular coordinates
2
€, €500 =€+ - ¢ ean®e =0 b6

= J "

To integrate pressures around the cone it is desirable to use polar coordinates

g£,x
£ TANS
E = { sin® tan®
kot w
N\
N = { cosw tan®, \ VL )J
N
n
The unit inward normal to the cone is
ea s . o~
~ _ VE _ -E% - T + Ctan“6k
n =|$§| = v-4 i
\/§ + T + C° tan ©
= - cos sinwt - cos® coswj + sin6k 4,8
The wind vector is taken in the € - ( plane so
V = Vsinai + Vcosa k ‘ 4.9
The velocity and pressure normal to the cone are
ﬁn = (V. f)A =«V;ﬁ =V(-sinx cos® sinw + cosa sinb)fi 4,10
- ~\2 V2(sin2w sin%d - 2sinw sind cos@ tanb + cosQG'tange)
(v.n)s= 5 411
sec”@
- N
p=pV 0 4,12
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For p it was assumed that la] 5_‘9'
so the formula is valid around the entire cone; no part of the surface lies in the

shadow.

The { running load (E) in the § direction is the integral of the component of

pressure in the E direction

~ -Ctan®_ N Ctan® _
t=-j p~idn+J pe+ Tan
Ctanb -Ctan®
sinf T
=+ ¢ C{ f(a,8,w)dw - f(a,e,w)dw} 4,13
secC T -
0
where

~ i, -~ -~ ~ -~
. . ; . 2 Zae: 2
f(a,8,w) = -sin“asin”® + 2sinocosatan®sin®w - cos“Qtan” Osin“w

The integral

4 2 i 3un sW v
J v f(a,0,w)dw = -sin a{ - ELE%XTQ__ - % coswsinw + %w}

W,
W
L L

®
+ 2sinacusatan9{f%&cosu(sinew + 2)} “

“L

2 2 W @
-cos“atan” 6 -%coswsinu)+ 5} u o1k
Y

Hence, for the nose cone

16 sin“8 2g .
qf = 3 secd sin2x 4,15
ql 32 sin” cos2Q 4,16

sece

e e e o s
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Figure A-3 indicates the nose cone is between

142,30 < x < 1L44.86

The cone semi-angle O is

110

-1 ~ 47,6°

6 = tan 25

so for small

e

%a = (3.91)(144,.86-x) = 566.4026-3.91x .17

M |

for
142,30 < x < 144,86

Cylindrical Sections

The surfaces of the cylinders in rectangular coordinates are taken as
£(E, M, Q) =0 =8 + 1 - &° 1,18
The surf@ces in polar coordinates are
£ =R sinw k.19
M = R cosw
The unit inward normal to a cylinder is

ﬁ=‘_v_f_ -ET -

2]

= -sinwl - coswj 4,20
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The wind vector is taken in the € - { plane so V = Vsinai + Vcosa l’;

The velocity and pressure normal to a cylinder are

’?n = (¥ . A)f = vV fi = (-Vsina sinw)f k.21
(V . ﬁ)2 = Vesinea sin‘w. k.22
_ 0 if sin@ sinw > 0
5 = . ST
pvneﬁ = pV2sin2asin2wﬁ if sin o sinw < O h.23

The pressure formula indicates that pressures on the backside is taken as zero.
The { running load in the § direction is the integtal of the component of pressure

in the & direction

-~ e R_ R -
t = - .] P id'n +J P Tdn
R -R
T 2n _ .
=+RJ p-'isinwdw-RJ P+ 1 sinw dw b, 24
0 14

If a >0, the first integral on the right is zero; if @ < O, the second integral
on the right is zero.

So fora >0
21

qD sineoz J sinuwdw
4

ag
0

.3 2n
___E_51n ® cosw | g— cosWw sinw + 3&8 }
b1

q D s‘inga{--

qD %T-r- sin’a h,25

for a >0

e G T8 SN

-
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For any O
~ n . 2 '
t = qD %; sin“a signx 4,26

This infamous result will be linearized and agreement will be enforced at 0.1

B | b2

From this and Fig. A-3,

0.6583 for 126.51 < x < 142,20 4L.28

o
Q
’r

1 -
3 & 0.9875 for 90.31 < x < 122.09 k.29

1.1850 for 8.32 < x < 84.08 . 4.30

Transition Sections
The difference in the impact pressure formulae between the cone furstrum

transition sections and the nose cone is in the shielding on the former.

EOGE OF
SHALDOWW

3 |
SHADOW ZONE %

TR ™ S

\
-
-
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Again assuming the cone angle is greater than the angle of attack (8 > ), it
is seen that the nose cone formula (4.13 ) previously developed can be used except
rhe area of integration should not include the shadow zZone of the sketch.

The édge of the shadow is

T]2+(§- [k+l;]ta.na)2~R2=O

h.31
The polar coordinates of the surface of the cone are
€ = { sinw tanb
' L.22
N = cosw tanb

Thus, the intersection of the edge of the shadow and the cone frustrum is giveu Ly

® = si -1ﬁgetan29 + [k + g]2 tan‘o - R- Y oan
s " 2flk + {JtanQ tan® B
7T
where 0 < w < /2.
This and equation 4.13 yield
~ sin® 2 7%
t=2q 222 (] £(a,8,0)dw - | £(a,8,0)do - J £(at, 8, w)dw) 4.3k
sec © 0 7 W

s

This could be differentiated with respect to @ but it is sufficient for uvrasani
purposes to develop numerical results., As for the cylinder, it will be assumed
adequate to linearize and to take the derivative such that T is correct at an
angle of attack of 0.1 rad.

2
~ 16 sin"g _. 1 -
t = ‘qt’;{-—3 ey sin2o(+1 - T cosu)s(srn w, + 2)1]

sinB . 2 . 1.2 3
+ Pauadutninit -
2 o2 sin a[s:.nZwS(—su in"w, + 8) + 3*8 n 2ws)]

+ sind0 cosga[sinEws + 5 - 2(1)5]} he35

e
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There are two cone frustrums to which the above formulae (equations 4 33 and 4. 35)
are to be applied. Figure A-3 puts the front one between 122.09 and 125.51, and
the aft one between 84.08 and 90.31. The sketch below (taken from Fig. A-3) shows
that the aft cone frustrum is affected only by the cylindrical section between
stations 90.31 and 122,09; the cylinéer between 126.51 m and 142,30 m does not

shadow the aft cone frustrum.

, 33
7 -/_39.37

/

14-4.86
122,09
90, 3!
£§4.08
— |98 e

1942.30

— (65—

/10"
126.51

The sketch and equations 4.33 and 4.35 yield

| 1d¥
® ¢ ¥ q do
m m deg
126.51 8.84 16.45 12,04
125.04 10.31 30,90 13.65
123.56 11.79 43.20 15.02
122.09 13.26 54, 40 15.82
90. 31 31.15 22,40 6.1k
88.23 33.23 27. 40 6.52
86.16 35.30 31.70 6.90

84,08 37.38 34,70 7.28
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These data can be approximated by

%% = 15.82 - 0.448{x - 122,09} - 0,2036{x - 122,09} - 4e36
for 122,09 < x < 126.51 and
%% = 7.28 ~ 0,1830{x ~ 84,08} L,37
for 84,08 < x £ 9b.31
Engine Shrouds and Aft Body
This

shrouds are assumed to be cones centered about the control engines,
permits estimating the loads (less the fin loads) by use of the cone and cylinder

formulae §f the angles w , Wiy Wy W, and w, are known,
8, o~ -
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It 1s assumed the crosswise component of the wind is coming from below. The

upward pressures on the cones (4.38) and the cylinder (4.39) are given by

. (e +w W n
T = 2q ﬁiﬂg g{ +-JJ 2 - Jﬂ 324 (signw)) 4 o o ! +1} £, 8,w)dw 4,38
0 w s 7
(s}

sec

oW,
, - . 2 ? T
t = qZR-sin ¢ sin o dw
W,
KR
- }_,'R; ai ’\FJ( ]' E RSt ) A:(‘Lt 2 } Q
= gk sin ¢~ f,:h sindw, + - «f:u)lj 4,39

The above will be evaluated at 2o angle of attazck of 0.1 vad ard the zzous

giween the wody and the hoiizonlal langeui 5 sulelded

zuaraoad ave shielded fvom the aiv blast,

Impact pressuires will be determined a2t four equidistant points along the cone

-

shrouds and aft cylindrical section,

1de
q o 1 2 3 L
m m deg dog deg deg

"I 150, 0 . . 0.0
£e2L 110,27 76.5
12,28 102,00 89,75
19,68 o8, fn . 97.65

1,180 C0.00  90.00
0. 8160 10,50 7950
063930 17.60  72.40
D ", MO0 63,40
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The top data are for the_éngine shrouds and the lower are for the cylinder,

These loads were combined to develop the load equations for 0.63 < x < 1.63 and for

5,05 < x < 8.32, The equations are presented in the AIR LOADS section. ‘

DERIVATION OF THE EQUATIONS OF MOTION

This development is considered as a modification to that presented in Appendix B
of the First Quarterly Progress Report., All symbols are the same as used the=ein

except as noted.

Equation 15 modified to provide an indication of the local angla of astrzzk in

Vx,t) o (x -x..)
W Z G e .
axst) = T te- “=+---?7-— ® Sel

Assuming the wind is stationary in space and using an average wehicie spsad

permits rewriting the wind as
Xy~ X
Vw(xjt) = VW(}H\I-’t - —— - ) 5o

" where

xN'is the longitudinal coordinate at the vehicle noses

The pitch (13) and heave (14) equations become
N o~
L7 de(x) _ s -
© =5 j o a(x,t){x - XCG}dx P %3
xx Yx,,
T
. _ E=X F_ _1_J"‘N dt(x _—
z = == ® + oo B+ = P Q dx Tald

*r

dt(x , Conp | . _
where *aéhl is the unsteady air lcad derivative (tabluated in the AIR L0OADY section).

G mteked e e

e

.y - .
e <
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s e e
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The state representation 16 becomes equations 5.5.

@ f11 %12 %13
z 3, ay, 8y 3y,
sl = Jo 0 a 0
. 33
o 1 0 0 0
z 0 1 0 0]
where
- 1 N db (X
ayy = (£0)) 1 Jx ao v
XX “x
T
U
i2 A2
F
a, = - — (x X,) = -C
13 2IXX CG B 2
7.2
a = - Q (x X )
1k I CG CP
XX
. LY e )
= (£f), 2 o v
X
T
C2 q%-D2 ,
a = . .1— -:g.—_ = =- -1—' H )
22 A m’ V'm
a =L
23 2m
CZ qﬁDg
a - EX . " _ X
ok m m m

&

N e

8 ™

u +

El(’\\;w,t)

Eg(vw)t)




a -14.6
33
b, = +14,6
3
*N
& (5t 80 ij - )v"’(ﬁ"t' )
1V'w? I do CG 'S
XX X
T
X =X
(££), Xn v (gt - He—)
S (Y ,t) 2 J de v dx
2\ 'w? m da v
X
T
C.I
(££), = _1xx
1 dt.
aaﬂx - xCG)dx
X
T
NI
G
(£ff), = "
o) ~
e 1 .
x da v
T
Xp = body station at tail
= body station at nose

*N

The quantities (ff)1

the Model Vehicle #2 data

factors might be used to provide consistency between steady-state wind tunnel data

and (ff)2 are fudge factors to produce consistency between

~

and the estimated %&.

and unsteady theoretical data.

The modifications to the components of the state on which there are criteris ave

similarly developed.

Quarterly Progress Report

are affected.

w b

Under other situations the fudge

Only the bending computations of equations 19 of the ¥First

kN

& S,

SEEYY - N
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The bending moments due to engine deflection (ME)’ aerodynamic forces (M ),

and inertial forces (MI) are given by

Me(x) = R(x - x)p o s
x ~
M(x) = -] Ealx,0)(x - x")ax’ | 5.7
MI(x) = fx M'T(x - x')dx’ ._ 5.8
- |
where

M’ = M'(x) is the mass density and

#(x) = F + (x - x,)0 S 5.9

is the local acceleration.

Hence,

IB(x) = ME(x) + MA(x) + MI(x) = R'(x - xB)ﬁ

+ {(ff)3 J)}:TM'(x -x') [323 + (x' - xcé);lza:ldx'} B

P ~~(x1_x ) ' .‘ : .. .
BT ) e 0l i o

+{(ff)h‘l;- %xb - x.') +M(x - x')[02h + (x' - xCG)alh]}dx’}w <+
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dt (x - x’
e (—77———l-+ M(x - x/)[azg + (x" -

xcc)alzj}dx '}z

* {(ff)5J

?
- X

~ v -xN ‘
e frteng [ {E onan BT
. *T

t - _H_____ )
\)

+ {(ff)6j M'(x - x ){_[' dt( ) Yl

Xr Xp

(££)
[ I - (x - UCR R (fi)Qdell} dxl,

XX

=d.B+4d

3 2c'p + d33cp + d3hé + 53(Vw,x,t)

3

where
_ d +R(x - x

M(x - x’)[a23 + (x’ -

/
. xCG)al3]dx
T

{f dt(x - cc) (x

- x’) + M (x - x’)[_'agl + (x'

d
(£6), = 33

o

d’E‘ 4 / ! 7 4
o (x -x") +M(x - x )[th + (x° - xCG)alh]} dx

. - ?
xCG)all]} dx

5,10

e
Y
Ly
I
"i/// -’ .

. v Ee "_".
e
. Y2
Loy BT
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- d
(ff)5 = - 3k
d~ - ! 4 ’ ¢ - ’
Jj: {E& (%L)' +M(x - x )[a22 + (x’ - XCG)aIQ-J} dx
T

| i xN
£V, %t) = -(ff)sf {£ - Wit }dx +
ey J'X M (x - ){un & VXt - Vv ) .
XT T -
££) ( ;
'r(: S ) (x = wgg) + fi)z Jox” Jax’

(ff)é"f {Ix {dt'(x—lll}dx'+r)4(x-x){.[ ..Ebit)l

(££),

, (££) , )
[ T (& - xe)(x - xg) + =3 2]‘1" }dx }

XX

Differentiating 5.10 yields the bending moment rate equation

+ Eh(;;’x’t) + éh(v;:x,t)

5.11
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where
dhl = d3.1a33 + d32a13 +d

.

dyp = d5p8;) + dyg +dja,, +‘3’§2
dyz = d3pdy, + 43,3, + dig

fu(?w;xyt) = 33251('\;;7,12) + d3)+(-:‘2(?r'w,t)

* ;- x’

+J pl(x,xl,t)vw(}%],t - N ) dx’
1

‘+ JJ( ‘['XN l’e(x)x,,x,:t)vw(xN)t - xNv- )dX”dXI
xT XT

[
- X

éh(é‘w’x’t) = Jj:T ;Jl(x,x",t)\'rw(xN,t - xNV_ )dx

P
4

u
- X

+ f: J-S‘ [.La(x,x',x”,t){,w(,&q,t - 'X—N—-v‘—'— Ydx"dx

T *r
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pex'se) = (26, EED (ex') 3
LLl(x,x',t} = _(f‘f)é -d-%l (x - x') %

- (ff)6 __ﬁ_ld?d;' (x - x') %

+ (££) éé%gil (x - x) %2
ug(x,;’,x”,t) = lm,x w6 (% %, 1)
Bp(sx’sx"t) = ply, + Iomw,
o= (£D)g M’(x - x) g§%§ﬁ1 %

Iy = (£5)¢ M(x - x) -‘ﬁ—%—l%
+ (ff)6 M’(g - x’) ﬁ%'_).é.

xl) dtSX”! l )
da vV

+ (ff)6 M'(x

/ d'EZX”Z V
x") o T

(££) (££)
My, =TT - (x" - %) (%" = xgg) + —

(£f£) (££)
- 1 v ’ 2
My, T_ (x7 = %) (%7 - xo0) + —=
(££), (££)
- ”" - 7 - b - 2 .
L2 (=" = xee)(x" = % )T 5 D
%X m
- (ff)l x/ -x )).( - (ff)l (xll - x );{
T ce’*ce T TT_ ce’*ce

e Ao by

agrtw i e b S

- -

-

-,
e o




A31
Equations 5.11 and the expression for éu('\‘r’w,x,t) show that impulses in \'Iw

generate finite values of iB’ . ‘V'~I":‘.qvuations' 5.10 and 5.11-above can now be used to

replace the third and fourth rows of eqﬁatiqns 19 of the First Quarterly Prdgfess

O
B 1 0 0 O O© 0 0 0
8 dyy 0 0 o of |s e, - o 0
d.. d.. d._d, O 4 £ 0
Bl %1% %390 |?] |° 3
1 a.d, o0 z 0 £ 0
1 1° 53 951 2 5Vw
z 0 0 0 1 o0 z 0 0 0
z 0o 0 0 0 1 0 0 0

‘Equations 2.2 previously presented are derived from 5.12 by neglecting the time:
derivatives in the coefficients. It is believed the real effects of these derivatives
are small and should be neglected at the present stage of the investigation. S

If the wind rate has no impulses, equation 5.11 can be simplified to
Ip=d,,B+d, o+ dh3cp +d))z +eu+ hbr(vw,x,t) 5.13

where

hj_l_(?;w,x,t) = &3251(7w,t) + d3h62(;w’t)

+ r #s(x,x',t)vw(xN,t-»-jv;— )dx
Xn :

+ r JKN %(x,x',x”,t)vw(xn,t - iN-V;i) dx”dx’ +

Xp *p
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Vil -x%  ox-x
+ p.l{x,x,'t}( xN._v .)vw{xN,t - xNV }

o - xl Ry -
- [J.l{X,x )t}( :N )Vw{x&:t ‘EV_XT}

D ) < o fr -x“v—'_x—l}

| V +[ - x!
%{x,x,t}-pl{x,x 2 D e e

= i}l{x,x ot} +— u.l(x x’,t)

V2 +[xN -x'X
V2

() f- SExD (o sy

+,(

dt(x’ ’ df'f'fx'}_] ' i
T T (x - x") + o ,

- 2 ’ PR
’ " . 4 ”" 8 V + [xN T X ]V : ’ ”"
M lxoxyx”, e} = Jpfx,x’,x",t ) - 57 (( T )i lx,x )
= ZLE{X,X’,X st} +l pb{x X ,x "t} |
V2 + rxN _ x”JV v ’ 5 |
B V2 )((ff)é‘l“h{x’x ,x”,t} 7 L%{x,x',x”,t}
+ -fz_é ;13{x,x',x”} 3_3/7 &{x,x/,x",t}
3 T on | . ,
fr 50 - - ) S : o
+ M'{x'}(x - x’) ——le’tvd;”
om, (££);
=T (2 - xgg)
XX
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{x, Ix NE{x,x',xN,t}dx' %

V2 + [ - k . "
(x,t) r p?{x,x',x,r,t'}dxl( ::N T )

T
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APPENDIX B
UNCONTROLLED VEHICLE RESPONSE COVARIANCES |
The response covariances of the vehicle are presented in the following

five figures. They are presented for reference, and may be used to check future

vehicle simulations. -

|
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APPENDTX c:
RESULTS OF CONTROLLER DETERMINATION

The control feedback gains and determiﬁistic input are presented in Figures
Cl.11 through Cl1.82.

The mean responses of the vehicle obtained with this controller are presented
in Figures C2.1 through C2.7.

The response covariances produced by the controller are presented in Figures 3
C3.1 through C3.7.
The bending-moment likelihood densities produced are presented in Figure ch.

The gimbal angle and bending moment correlation coefficients produced are !

presented in Figure C5.
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APPENDIX D
MINIMAX RESPONSE COVARIANCES

. The response covariances obtained with the minimax controller are presented

in Figures D1 through D7
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APPENDIX E
BENDING MOMENT RATE COEFFICIENTS
The modified bending moment rate coeffiéients are presented in Figures El and E2.

3 3I
The coefficient Sz is the negative of the coefficient 572 presented in El.
w

e




